Effects / Volumes / Forces / Harms

Tobias Gilk - September 26, 2022

GRC 2022 Dubai Advanced MRI Safety Seminar

Time-Varying Gradients: Effects / Volumes / Forces Harms

Rules of the Road

- Everything on the screen is for you (you can copy or take photos).
- If you have questions, ask!
- If you disagree, please speak up.

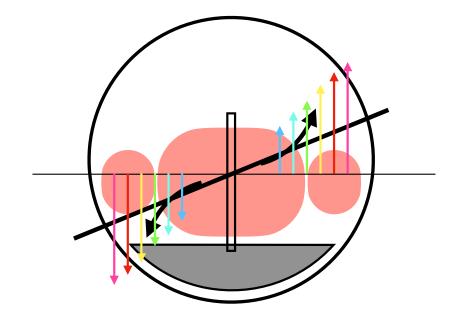
Outline

Time-Varying Gradient Magnetic Fields

- Intro
- Fields / Distributions / Units
- Why We Have Time-Varying Gradients
- Physical Forces / Bioeffects
- Implant Scenarios
- Q & A

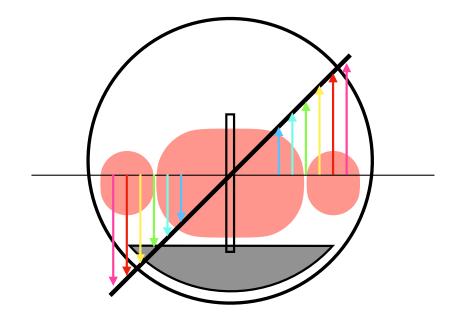
"If you don't know what you're exposing a patient (or device) to, you can't begin to perform an MR risk-assessment."

- Me


Time-Varying Gradients Recap & Advance

- When & Where
- Units & Measures
- Plots & Graphs
- Physical Effects
- Physiologic Effects
- Implant Scenarios

Time-Varying Gradients What Are They?


- Rapidly fluctuating magnetic field
- Changing 1,000s or 10s of 1,000s of times per second (in the human auditory range)

- Because we only want data (signal) from one region (slice) at a time.
- Larmor Frequency

Time-Varying Gradients When & Where?

- Only during active imaging
- Only in the bore
- But not uniform throughout the bore

Time-Varying Gradients Modes

Normal Mode

 80% of Mean Perception Threshold

First Level Controlled **Operating Mode***

 100% of Mean Perception Threshold

Second Level Controlled **Operating Mode**

Up To & Including Pain

201.3.208

FIRST LEVEL CONTROLLED OPERATING MODE

mode of operation of the MR EQUIPMENT in which one or more outputs reach a value that can cause physiological stress to PATIENTS which needs to be controlled by MEDICAL SUPERVISION

Amplitude - Slope - Slew

Amplitude

- Single Factor (often mT)
- Max change to field

Slope

- Two-Factor (T/m)
- Change to Field as a function of distance
- Steeper Slope = Thinner Slices

Slew

- Three-Factor (T/m/s)
- Captures All 3 Dynamic Elements of TVG

Rise-Time & Rate of Change

Also...

Rise-Time

Single-Factor (ms)

Speed of Acquisition

Rate

Two-Factor (T/s)

 Uses Max Values For Amplitude & Rise-Time

Plots & Graphs

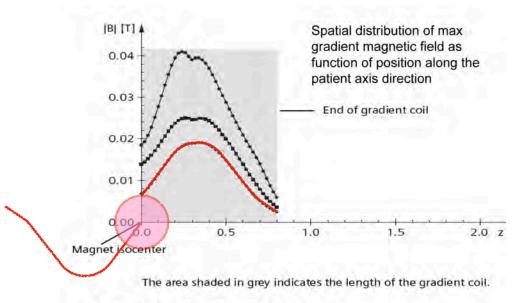
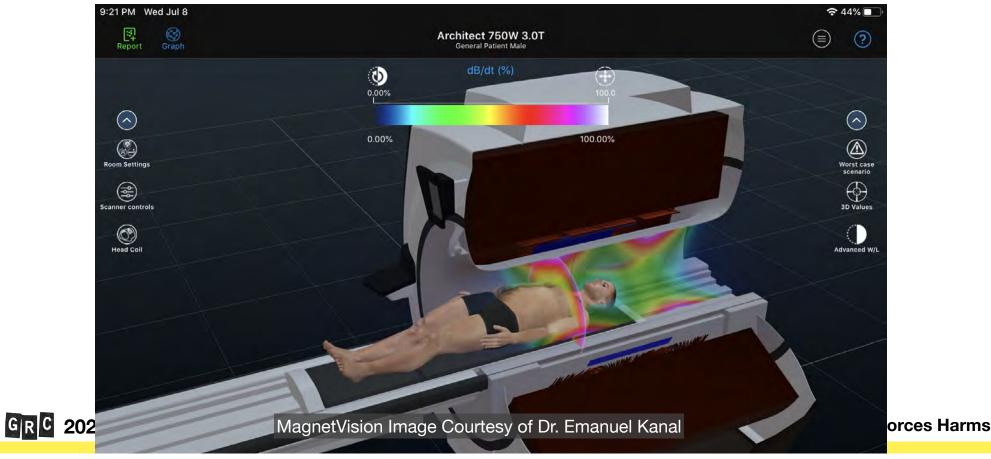



Figure 1: Max gradient magnetic field plots

Plots & Graphs

Faraday's Law of Induction

Faraday's Law of Induction

Ar electrical conductor exposed to a changing magnetic field will experience an induced electrical voltage.

Physical & Physiological Effects

Time-Varying Gradients Physical Effects

- High-Frequency Vibration
- Induced Voltages

High-Frequency Vibration

High-Frequency Vibration

- Remember Lenz Effect From Static Field Lecture?
 - Needs Electrically Conductive Material
 - Doesn't Have To Be (Ferro)Magnetic
- High-Frequency Vibration Is 'Machine-Gun' Version Of Lenz

Time-Varying Gradients High-Frequency Vibration

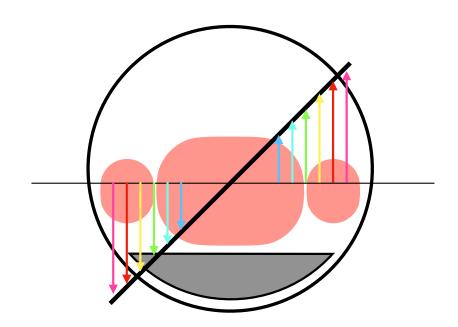
- What Makes TVG-Induced Vibration Stronger?
 - Region of Stronger Gradients
 - Better Electrical Conductor
 - Larger Object
- What Makes Perception Stronger?
 - More Sensitive Nervous Tissues

Time-Varying Gradients Induced Voltages

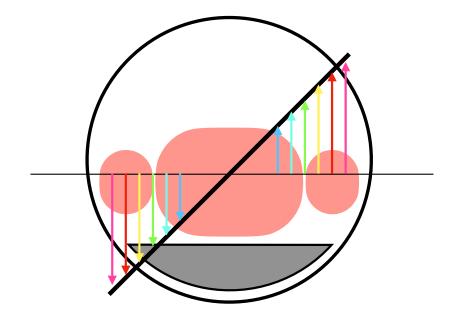
Induced Voltages

- At TVG Amplitudes & Frequencies, Induced Voltages Are Most Similar to Neuroelectric Signal
- They Do Also Produce Heat, But No Record of Gradient Heat-Caused Injuries

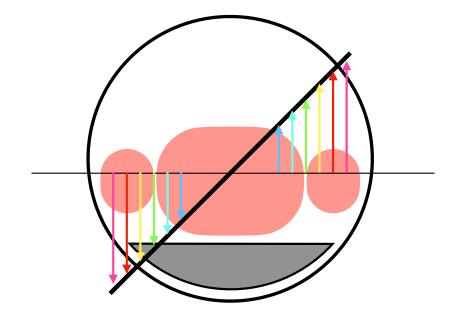
Time-Varying Gradients Physiological Effects


- Peripheral Nerve Stimulation (PNS)
- **Direct Neuromuscular Stimulation**
- Heating

Peripheral Nerve Stimulation (PNS)


Peripheral Nerve Stimulation (PNS)

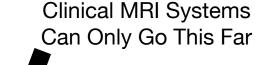
• Why Is It 'Peripheral'?


Peripheral Nerve Stimulation (PNS)

- What Does It Feel Like?
 - Tingling
 - 'Creepy Crawlies'
 - Buzzing / Shocking
 - **Metalic Taste**
 - Magnetophosphenes

Peripheral Nerve Stimulation (PNS)

- Can Increase All The Way To...
 - Muscle Twitching
 - Pain


Direct Neuromuscular Stimulation

"So if gradients can stimulate peripheral nerves, couldn't they also stimulate nerves controlling organs, or even the central nervous system?"

Yes, if MR systems allowed them to go that high. But they don't.

Direct Neuromuscular Stimulation

- Different nervous tissues have different tolerances for being activated by time-varying gradient magnetic fields.
 - **Sensory Organs**
 - Muscles
 - Organ Systems (e.g. Heart, Diaphragm, Lungs, GI)
 - Central Nervous System (e.g. Spine & Brain)

Time-Varying Gradients Heating

Time-Varying Gradients Heating

- Can Add Modestly To Heating
- No Documented Patient Injury From Gradient-Induced Heating
- In Some Devices (Large, Flat) There May Be Gradient Limitations

The Problem With Leads

- Voxels Of Deposition
- Magnetism & Electricity: Conjoined Twins
- Insulation & 'Who Is In The Driver's Seat?'

- **Voxels Of Deposition**
- MR System Controls Are Based On Exposure To Human Beings
- What Happens When There's Something Other Than Human Tissues w/in Volume of Deposition?

The Conjoined Twin Conundrum

- Enters As Magnetism
- **Encounters Good Electrical Conductor**
- Switches To Electricity

Insulation & 'Who Is In The Driver's Seat?'

- Magnetism Passes Through Electrical Insulation
- Enters Lead (Designed To Be Electrically Conductive)
- Electricity In Driver's Seat
- Can't Exit Through Insulation

Time-Varying Gradients Insulation & 'Who Is In The Driver's Seat?'

- Capped Leads May Exacerbate Problem
 - Only Half As Many Ways Out

Time-Varying Gradients The Problem With Leaded Devices

- False Feedback
- **Unintended Stimulation**

False Feedback

Devices That Monitor Neuroelectric Signal

 May Perceive Gradient-Induced Voltages As From Patient

May Trigger Inappropriate **Delivery of Therapy**

Unintended Stimulation

Gradient Energies Delivered To Organ

May Deliver Unintended Stimulation

Time-Varying Gradients How We Manage TVG Risks

- Positionally
- ScanWise

Time-Varying Gradients How We Manage TVG Risks

- Positionally
 - If The Object Of Concern Is Receiving No Incident Gradient Energy (Consider Electrical Pathways), What Risk Is There
- We Can't Control Spatial Distribution Of TVG Energies

Time-Varying Gradients How We Manage TVG Risks

- ScanWise
 - Allows For Control Of Level Of Gradient Output
 - Not Positionally Aware

Thank You

Tobias Gilk, MRSO, MRSE

- TGilk@GilkRadiologyConsultants.com
- @tobiasgilk
- www.facebook.com/groups/MRIsafety

